How to deal with those pesky high risks without even trying

Screwtape here,

One of my clients recently came to me with what seemed to be an insurmountable problem in getting his facility accepted despite the presence of an unacceptably high risk of a catastrophic accident. The regulator, not happy, likewise all those mothers with placards outside his office every morning. Most upsetting. Not a problem said I, let me introduce you to the Screwtape LLC patented cut and come again risk refactoring strategy. Please forgive me now dear reader for without further ado we must do some math.

Risk is defined as the loss times probability of loss or R = L x P (1), which is the reverse of expectation, now interestingly if we have a set of individual risks we can add them together to get the total risk, for our facility we might say that total risk is R_f = (R_1 + R_2 + R_3 … + R_n). ‘So what Screwtape, this will not pacify those angry mothers!’ I hear you say? Ahh, now bear with me as I show you how we can hide, err I mean refactor, our unacceptable risk in plain view. Let us also posit that we have a number of systems S_1, S_2, S_3 and so on in our facility… Well instead of looking at the total facility risk, let’s go down inside our facility and look at risks at the system level. Given that the probability of each subsystem causing an accident is (by definition) much less, why then per system the risk must also be less! If you don’t get an acceptable risk at the system level then go down to the subsystem, or equipment level.

The fin de coup is to present this ensemble of subsystem risks as a voluminous and comprehensive list (2), thereby convincing everyone of the earnestness of your endeavours, but omit any consideration of ensemble risk (3). Of course one should be scrupulously careful that the numbers add up, even though you don’t present them. After all there’s no point in getting caught for stealing a pence while engaged in purloining the Bank of England! For extra points we can utilise subjective measures of risk rather than numeric, thereby obfuscating the proceedings further.

Needless to say my client went away a happy man, the facility was built and the total risk of operation was hidden right there in plain sight… ah how I love the remorseless bloody hand of progress.

Infernally yours,

Screwtape

Notes

1. Where R = Risk, L = Loss, and P = Probability after De’Moivre. I believe Screwtape keeps De’Moivre’s heart in a jar on his desk. (Ed.).

2. The technical term for this is a Preliminary Hazard Analysis.

3. Screwtape omitted to note that total risk remains the same, all we’ve done is budgeted it out across an ensemble of subsystems, i.e. R_f = R_s1 + R_s2 + R_s3 (Ed.).