Archives For learning curve

When you look at the safety performance of industries which have a consistent focus on safety as part of the social permit, nuclear or aviation are the canonical examples, you see that over time increases in safety tend to plateau out. This looks like some form of a learning curve, but what’s the mechanism, or mechanisms that actually drives this process? I believe there are two factors at play here, firstly the increasing marginal cost of improvement and secondly the problem of learning from events that we are trying to prevent.

Increasing marginal cost is simply an economist’s way of stating that it will cost more to achieve that next increment in performance. For example, airbags are more expensive than seat-belts by roughly an order of magnitude (based on replacement costs) however airbags only deliver 8% reduced mortality when used in conjunction with seat belts, see Crandall (2001). As a result the next increment in safety takes longer and costs more (1).

The learning factor is in someways like an informational version of the marginal cost rule. As we reduce accident rates accidents become rarer. Now one of the traditional ways in which safety improvements occur is through studying accidents when they occur and then to eliminate or mitigate identified causal factors. Obviously as the accident rate decreases this likewise the opportunity for improvement also decreases. When accidents do occur we have a further problem because (definitionally) the cause of the accident will comprise a highly unlikely combination of factors that are needed to defeat the existing safety measures. Corrective actions for such rare combination of events therefore are highly specific to that event’s context and conversely will have far less universal applicability.  For example the lessons of metal fatigue learned from the Comet airliner disaster has had universal applicability to all aircraft designs ever since. But the QF-72 automation upset off Learmouth? Well those lessons, relating to the specific fault tolerance architecture of the A330, are much harder to generalise and therefore have less epistemic strength.

In summary not only does it cost more with each increasing increment of safety but our opportunity to learn through accidents is steadily reduced as their arrival rate and individual epistemic value (2) reduce.

Notes

1. In some circumstances we may also introduce other risks, see for example the death and severe injury caused to small children from air bag deployments.

2. In a Popperian sense.

References

1. Crandall, C.S., Olson, L.M.,  P. Sklar, D.P., Mortality Reduction with Air Bag and Seat Belt Use in Head-on Passenger Car Collisions, American Journal of Epidemiology, Volume 153, Issue 3, 1 February 2001, Pages 219–224, https://doi.org/10.1093/aje/153.3.219.